Математика за 4. клас
-
Начален преговор
Задълбоченият начален преговор е предпоставка за:
– извършване на корекционна работа на придобитите от учениците знания и умения от 3. клас;
– пълноценна работа по усвояването на числата след 1000 и действията с тях в 4. клас. -
Числата над 1000
Задълбоченото изучаване на числата след 1000, усвояването на основните постановки на десетичната позиционна бройна система чрез използването на подходящи нагледни опори е предпоставка както за пълноценното усвояване на аритметичните операции с тях, така и за пълноценната пропедевтика, свързана с надграждането на познанията на учениците за изучаваните в следващите класове числа.
-
Събиране и изваждане на многоцифрени числа без преминаване
Знанията за събиране и изваждане без преминаване, надграждането им чрез запознаване с начина за намиране на неизвестен умалител, групата уроци за някои геометрични понятия са основа за по-нататъшното усвояване и приложение на писмените алгоритми за събиране и изваждане на многоцифрените числа.
-
Събиране и изваждане на многоцифрени числа с преминаване
Придобитите до този момент знания за действията събиране и изваждане без преминаване на десетицата са предпоставка за надграждането им и изучаването на тези действия в случаите, когато се осъществява преминаване на десетицата в различните редове. Това е основа за разширяване на натрупания от трети клас опит, за придобиване на нови знания, необходими за следващите класове. Създават се условия за разбиране на ежедневната приложимост на изученото по математика.
-
Умножение на многоцифрено число с едноцифрено число
Усвояването на числата след 1000, действията събиране и изваждане с тях са знания, които могат да се надградят с действието умножение на числата след 1000 с едноцифрено число. Това е основа за разширяване на натрупания опит, за придобиване на нови знания в 4. клас, за осъзнаване на прилoжимостта им в ежедневието ни.
-
Деление на многоцифрено число с едноцифрено число
Знанията за писмения алгоритъм при деление на трицифрено с едноцифрено число, които надграждат табличното умножение и деление, понятията „половинка“, „третинка“, „четвъртинка“, „десетинка“, познаването на разпределителното свойство на делението, са основа за по-нататъшното изучаване и приложение на писмения алгоритъм за деление на многоцифрено с едноцифрено число в 4. клас и разширяването на тези знания и умения в следващите класове.
-
Умножение на многоцифрено число с двуцифрено число
Усвояването на числата след 1000, действията събиране и изваждане с тях, умножение и деление с едноцифрено число са знания, които могат да се надградят с действието умножение на числата след 1000 с двуцифрено число. Това е основа за разширяване на натрупания опит, за придобиване на нови знания в 4. клас, за осъзнаване на прилoжимостта им в ежедневието ни.
-
Деление на многоцифрено число с двуцифрено число
Знанията за писмения алгоритъм при деление на многоцифрено с едноцифрено число, които надграждат таблично умножение и деление, понятията „половинка“, „третинка“, „четвъртинка“, „десетинка“, познаването на разпределителното свойство на делението, са основа за по-нататъшното изучаване и приложение на писмения алгоритъм за деление на многоцифрено с двуцифрено число в 4. клас и разширяването на тези знания и умения в следващите класове.
-
Годишен преговор
Задълбоченият годишен преговор е предпоставка за извършването на корекционна работа относно придобитите знания и умения от учениците от 4. клас, както и за систематизирането и обобщаването им. Всичко това представлява пълноценна подготовка за разширяване на познанията на учениците за нови числа в 5. клас, за действията с тях, за геометричните фигури и тела, текстовите задачи и др.